Backend
Orfeo - Feedback Manager

Orfeo - Feedback Manager

Overview

Orfeo is the Feedback Manager agent in the TKM AI Agency Platform, responsible for collecting, processing, and managing user feedback and quality assurance data. It handles feedback collection, analysis, and storage while providing insights for system improvement and quality monitoring.

Directory Structure

Backend/CRM/Orfeo/
├── data/                # Feedback data storage
├── orfeo.py            # Main agent implementation
├── api_orfeo.py        # FastAPI endpoints
├── tools.py            # Feedback processing utilities
├── tools_schema.py     # Data models and schemas
├── orfeo_migrations.py # Database migrations
├── qa.json            # QA configurations
└── test_orfeo.py      # Unit tests

Main Components

OrfeoAgent Class

The core component that handles feedback management:

  • Feedback collection and processing
  • Quality metrics tracking
  • Feedback analysis and categorization
  • Data storage and retrieval

Processing Pipeline

  1. Feedback Reception

    • Receives feedback through API endpoints
    • Validates feedback format and content
    • Categorizes feedback type
  2. Analysis Processing

    • Sentiment analysis
    • Feedback categorization
    • Priority assignment
    • Quality metrics calculation
  3. Data Management

    • Stores processed feedback
    • Maintains feedback history
    • Generates analytics reports
    • Tracks improvement metrics

API Operations

Submit Feedback

  • Endpoint: /submit_feedback
  • Method: POST
  • Purpose: Records user feedback and quality assessments
  • Request Format:
    {
      "user_id": "user_identifier",
      "content": "Feedback content",
      "category": "feedback_category",
      "rating": 5,
      "metadata": {
        "source": "chat",
        "context": "response_quality"
      }
    }
  • Response Format:
    {
      "status": "success",
      "feedback_id": "feedback_identifier",
      "timestamp": "2024-01-15T12:00:00Z"
    }

Get Analytics

  • Endpoint: /get_analytics
  • Method: GET
  • Purpose: Retrieves feedback analytics and quality metrics
  • Response Format:
    {
      "total_feedback": 100,
      "average_rating": 4.5,
      "category_distribution": {
        "response_quality": 40,
        "system_performance": 30,
        "user_experience": 30
      },
      "trend_analysis": {}
    }

Key Features

  1. Feedback Management

    • Multi-channel feedback collection
    • Structured and unstructured feedback handling
    • Rating system management
    • Historical tracking
  2. Quality Assurance

    • Response quality monitoring
    • Performance metrics tracking
    • Trend analysis
    • Improvement recommendations
  3. Analytics System

    • Feedback aggregation
    • Statistical analysis
    • Trend identification
    • Report generation

Integration

Platform Integration

  • Interfaces with other CRM agents
  • Event-based notifications
  • Quality metrics sharing
  • System-wide analytics

Data Storage

  • Database management
  • Data migration handling
  • Backup mechanisms
  • Data retention policies

Error Handling

  1. Input Validation

    • Format verification
    • Content validation
    • Rating range checking
    • Category validation
  2. Processing Errors

    • Analysis failure handling
    • Storage error management
    • Recovery mechanisms
    • Error reporting

Performance Features

  1. Optimization

    • Batch processing
    • Caching mechanisms
    • Query optimization
    • Resource management
  2. Monitoring

    • Processing metrics
    • Storage utilization
    • Response times
    • System health

Data Models

Feedback Entry

{
    "feedback_id": str,
    "user_id": str,
    "content": str,
    "category": str,
    "rating": int,
    "timestamp": datetime,
    "metadata": dict
}

Analytics Report

{
    "report_id": str,
    "period": str,
    "metrics": dict,
    "trends": list,
    "recommendations": list
}