Backend
Backoffice
Gigantea - System Monitor

Gigantea - Feedback Analysis Agent

Overview

Gigantea is the Feedback Analysis agent in the TKM AI Agency Platform, responsible for processing and analyzing user feedback using advanced LLM capabilities. It handles feedback collection, sentiment analysis, categorization, and generates actionable insights for platform improvement.

Directory Structure

Backend/Backoffice/Gigantea/
├── data/                # Feedback storage
├── gigantea.py         # Main agent implementation
├── api_gigantea.py     # FastAPI endpoints
├── gigantea_tools.py   # Analysis utilities
├── gigantea_schema.py  # Data models and schemas
└── test_gigantea.py    # Unit tests

Main Components

GiganteaAgent Class

The core component that handles feedback analysis:

  • Feedback processing
  • LLM-powered analysis
  • Sentiment detection
  • Category classification

Processing Pipeline

  1. Feedback Reception

    • Data validation
    • User verification
    • Context gathering
    • Priority assessment
  2. Analysis Processing

    • Sentiment analysis
    • Key point extraction
    • Category assignment
    • Summary generation
  3. Result Management

    • Database storage
    • Event notification
    • Email coordination
    • Statistics update

Key Features

Feedback Analysis

  • Sentiment detection
  • Category classification
  • Priority assessment
  • Summary generation

Data Management

  • Feedback storage
  • Statistics tracking
  • Historical analysis
  • Trend identification

LLM Integration

  • Context-aware analysis
  • Multi-language support
  • Customizable models
  • Performance optimization

Event System

  • Feedback submission events
  • Analysis completion notifications
  • Email coordination
  • Limit checking

Integration

Database Connection

  • SingleStore integration
  • Schema management
  • Query optimization
  • Data archival

Event System

  • Event-based processing
  • Asynchronous handling
  • Status tracking
  • Error recovery

Email Management

  • Notification templates
  • Delivery tracking
  • Error handling
  • Queue management

Error Handling

Analysis Errors

  • LLM failures
  • Validation issues
  • Processing timeouts
  • Data inconsistencies

Recovery Mechanisms

  • Retry logic
  • Fallback processing
  • Error notification
  • Data recovery

Integration with Other Agents

Core Dependencies

  • Alfari: LLM configuration
  • Niger: Data persistence
  • Lyra: Email notifications
  • Gulosa: User verification

Optional Integration

  • Barbatus: Authentication
  • Messor: Task scheduling
  • Sessile: Cache management